ส่วนเบี่ยงเบนมาตรฐาน

Posted: January 25, 2011 in Uncategorized

ส่วนเบี่ยงเบนมาตรฐาน (Standard Deviation)
ในการวัดการกระจายโดยใช้ส่วนเบี่ยงเบนเฉลี่ยนั้นมีปัญหาในเรื่องการใช้เครื่องหมายสัมบูรณ์ (Absolute Value) ซึ่งทำให้ค่าที่วัดได้ลดความเชื่อถือไป จึงมีการคิดวิธีวัดการกระจายโดยการยกกำลังสองของผลต่างระหว่างคะแนนกับมัชฌิมเลขคณิตของข้อมูลชุดนั้นแล้วถอดกรณ์ที่ 2 ของส่วนเบี่ยงเบนยกกำลังสองเฉลี่ย เป็นวิธีการวัดการกระจายที่ เรียกว่าส่วนเบี่ยงเบนมาตรฐาน (Standard Deviation)
ค่าเบี่ยงเบนมาตรฐานใช้วัดการกระจายของข้อมูล เพื่อพิจารณาว่าคะแนนแต่ละตัวจะแตกต่างไปจากค่ากลางมากน้อยเพียงใด คำนวณโดยเอาคะแนน X แต่ละตัวลบด้วยมัชฌิมเลขคณิต( ) ของข้อมูลชุดนั้น ซึ่ง X – แต่ละตัวอาจมีค่าเป็นลบ (X < ) หรือบวก (X> ) จึงต้องยกกำลังสองของคะแนนเบี่ยงเบนแต่ละตัวนั้นเพื่อให้เครื่องหมายหมดไป แล้วหาค่าเฉลี่ยของผลบวกของกำลังสองของคะแนนเบี่ยงเบน คือ ซึ่งจะได้รับค่าความแปรปรวน ถ้าถอดรากที่สองของค่าความ แปรปรวนจะได้ค่าความเบี่ยงเบนมาตรฐาน
ความแปรปรวน (Variance) คือ ค่าเฉลี่ยของผลรวมทั้งหมดของคะแนนเบี่ยงเบนยกกำลังสอง ใช้สัญลักษณ์ S2 แทนความแปรปรวนของกลุ่มตัวอย่างและ s 2 แทนความแปรปรวนของประชากรซึ่งหาได้จากสูตร
ความแปรปรวนประชากร s 2 =
ความแปรปรวนของกลุ่มตัวอย่าง S2 =
คือ มัชฌิมเลขคณิตกลุ่มตัวอย่าง
ส่วนเบี่ยงเบนมาตรฐาน (Standard Deviation) คือ รากที่สองของความแปรปรวน
ส่วนเบี่ยงเบนมาตรฐานของประชากร s ใช้สูตร
s =
ส่วนเบี่ยงเบนมาตรฐานของกลุ่มตัวอย่าง S ใช้สูตร
S =
ซึ่งใช้ในการวิเคราะห์ข้อมูล เพื่อการวิจัย
ในที่นี้เราจะใช้ส่วนเบี่ยงเบนมาตรฐานในการวัดการกระจายซึ่งใช้กับจำนวนข้อมูลจำนวนไม่มากนักและนิยมใช้กันโดยทั่วไป ซึ่งคำนวณได้ดังนี้
1. ส่วนเบี่ยงเบนมาตรฐานของคะแนนที่ไม่ได้จัดหมวดหมู่ (Ungrouped Data)
สูตร S.D. =
S.D. คือ ส่วนเบี่ยงเบนมาตรฐาน
X1 คือ ข้อมูล (i = 1,2,3…N)
คือ มัชฌิมเลขคณิต
N คือ จำนวนข้อมูลทั้งหมด
ตัวอย่างที่ 17 จงหาค่าส่วนเบี่ยงเบนมาตรฐานของข้อมูลต่อไปนี้ 1, 2, 4, 6, 8, 9
วิธีทำ 1. หาค่ามัชฌิมเลขคณิต =
= 5
2. หาส่วนเบี่ยงเบนมาตรฐาน
สร้างตารางช่วยในการคำนวณ
X ( X- ) ( X- )2
1
2
4
6
8
9 -4
-3
1
1
3
4 16
9
1
1
9
16
= 52
S.D. = = = =
ค่าส่วนเบี่ยงเบนมาตรฐานของข้อมูลชุดนี้คือ 2.9

1. ส่วนเบี่ยงเบนมาตรฐานของข้อมูลที่จัดหมวดหมู่ (Grouped Data)
S.D. =
S.D. คือ ส่วนเบี่ยงเบนมาตรฐาน
f คือ ความถี่
X คือ จุดกึ่งกลางชั้น
คือ มัชฌิมเลขคณิต
N คือ จำนวนข้อมูล
ตัวอย่างที่ 19 จากข้อมูลในตารางจงหาค่าส่วนเบี่ยงเบนมาตรฐานของข้อมูล
คะแนน f x fx x – (x – )2 f(x – )2
5 – 9
10 – 14
15 – 19
20 – 24
25 – 29
30 – 34
35 – 39 3
6
7
8
10
12
14 7
12
17
22
27
32
37 21
72
119
176
270
384
148 -16.8
-11.8
-6.8
-1.8
3.2
8.2
13.2 282.24
139.24
46.24
3.24
10.24
67.24
172.24 846.72
835.44
323.68
25.92
102.4
806.88
696.96
N = 50

วิธีทำ 1. หาค่ามัชฌิมเลขคณิต =
=
2. หาค่าเบี่ยงเบนมาตรฐาน
สูตร S.D =
=
=
=
ค่าเบี่ยงเบนมาตรฐานของข้อมูลนี้ คือ 8.53
ข้อสังเกต
1. เป็นการวัดการกระจายที่ให้ค่าลักษณะข้อมูลได้ละเอียดและดีที่สุดและเป็นการวัดการกระจายที่ใช้กันมากที่สุด
2. เมื่อเอาค่าคงที่ (C) บวก หรือ ลบคะแนนทุกตัวของข้อมูลชุดหนึ่ง ส่วนเบี่ยงเบนมาตรฐานของข้อมูลชุดนั้นจะไม่เปลี่ยนแปลง
3. เมื่อเอาค่าคงที่ (C) คูณคะแนนทุกตัวของข้อมูลชุดหนึ่ง ส่วนเบี่ยงเบนมาตรฐานของข้อมูลชุดใหม่จะเปลี่ยนแปลงไปดังนี้

4. เมื่อเอาค่าคงที่ (C) หารคะแนนทุกตัวของข้อมูลชุดหนึ่ง ส่วนเบี่ยงเบนมาตรฐานของข้อมูลชุดใหม่จะเปลี่ยนแปลงไปดังนี้
S = Sx

About these ads

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s