ส่วนเบี่ยงเบนมาตรฐาน

Posted: January 25, 2011 in Uncategorized

ส่วนเบี่ยงเบนมาตรฐาน (Standard Deviation)
ในการวัดการกระจายโดยใช้ส่วนเบี่ยงเบนเฉลี่ยนั้นมีปัญหาในเรื่องการใช้เครื่องหมายสัมบูรณ์ (Absolute Value) ซึ่งทำให้ค่าที่วัดได้ลดความเชื่อถือไป จึงมีการคิดวิธีวัดการกระจายโดยการยกกำลังสองของผลต่างระหว่างคะแนนกับมัชฌิมเลขคณิตของข้อมูลชุดนั้นแล้วถอดกรณ์ที่ 2 ของส่วนเบี่ยงเบนยกกำลังสองเฉลี่ย เป็นวิธีการวัดการกระจายที่ เรียกว่าส่วนเบี่ยงเบนมาตรฐาน (Standard Deviation)
ค่าเบี่ยงเบนมาตรฐานใช้วัดการกระจายของข้อมูล เพื่อพิจารณาว่าคะแนนแต่ละตัวจะแตกต่างไปจากค่ากลางมากน้อยเพียงใด คำนวณโดยเอาคะแนน X แต่ละตัวลบด้วยมัชฌิมเลขคณิต( ) ของข้อมูลชุดนั้น ซึ่ง X – แต่ละตัวอาจมีค่าเป็นลบ (X < ) หรือบวก (X> ) จึงต้องยกกำลังสองของคะแนนเบี่ยงเบนแต่ละตัวนั้นเพื่อให้เครื่องหมายหมดไป แล้วหาค่าเฉลี่ยของผลบวกของกำลังสองของคะแนนเบี่ยงเบน คือ ซึ่งจะได้รับค่าความแปรปรวน ถ้าถอดรากที่สองของค่าความ แปรปรวนจะได้ค่าความเบี่ยงเบนมาตรฐาน
ความแปรปรวน (Variance) คือ ค่าเฉลี่ยของผลรวมทั้งหมดของคะแนนเบี่ยงเบนยกกำลังสอง ใช้สัญลักษณ์ S2 แทนความแปรปรวนของกลุ่มตัวอย่างและ s 2 แทนความแปรปรวนของประชากรซึ่งหาได้จากสูตร
ความแปรปรวนประชากร s 2 =
ความแปรปรวนของกลุ่มตัวอย่าง S2 =
คือ มัชฌิมเลขคณิตกลุ่มตัวอย่าง
ส่วนเบี่ยงเบนมาตรฐาน (Standard Deviation) คือ รากที่สองของความแปรปรวน
ส่วนเบี่ยงเบนมาตรฐานของประชากร s ใช้สูตร
s =
ส่วนเบี่ยงเบนมาตรฐานของกลุ่มตัวอย่าง S ใช้สูตร
S =
ซึ่งใช้ในการวิเคราะห์ข้อมูล เพื่อการวิจัย
ในที่นี้เราจะใช้ส่วนเบี่ยงเบนมาตรฐานในการวัดการกระจายซึ่งใช้กับจำนวนข้อมูลจำนวนไม่มากนักและนิยมใช้กันโดยทั่วไป ซึ่งคำนวณได้ดังนี้
1. ส่วนเบี่ยงเบนมาตรฐานของคะแนนที่ไม่ได้จัดหมวดหมู่ (Ungrouped Data)
สูตร S.D. =
S.D. คือ ส่วนเบี่ยงเบนมาตรฐาน
X1 คือ ข้อมูล (i = 1,2,3…N)
คือ มัชฌิมเลขคณิต
N คือ จำนวนข้อมูลทั้งหมด

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s